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We introduce a cellular automata methodology for studying photonics of light-induced phase transitions.
Multiphysical complexity over disparate length/timescales is reduced to a simple, heuristic rule/parameter set
in @ model successfully describing several independent experimental datasets.

Phase-change Photonics CA Model for Gallium Phase-change Nonlinearity
 Light-induced structural transitions are of enormous technological  Solid Ga near its bulk melting point (7., = 29.8°C) manifests a gigantic, broadband phase-change
importance and fundamental scientific interest ... nonlinearity underpinned by thermal + non-thermal light-induced surface metallization.
- optical data storage - laser-based manufacturing
- controlling laser dynamics - optical and plasmonic modulation 3. Optically EXCITED « CA model for metallization dynamics: 2D array of Ga (crystalline
- insight to fundamental physics of transition mechanisms TN unit) cells; 3 states; 4 transition rules applicable in each time step.
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* A cellular automata (CA) model can capture this complexity in a sparse / Probabilistic, conditional on environment
set of ‘evolutionary’ rules | | METALLIC - > GROUND | [pependent on METALLIC state lifetime IF allowed by neighbourhood
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Femtosecond Optical Excitation

Experiment
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Rapid (non-thermal) excitation of diffuse EXCITED EXCITED cells relax to METALLIC; * CAreplicates experimental pump-probe measurements of fs-ps
cell population; Neighbourhood irrelevant. Thermalisation via neighbour interactions. Ga/silica interface reflectivity dynamics, supporting prior
Corresponding sharp reflectivity increase. Slow reflectivity increase over 10s of ps. inference of diffuse ‘fractional melting’ mechanism.

Dynamics & Microscopic Mechanism vs. Pulse Duration
FWHM pulse duration 1,
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Short pulses (7, < T,): Long pulse regime (7,>> T,):
Diffuse EXCITED/METALLIC cell population in GROUND state Ga bulk; No change in surface-melt Growth of METALLIC surface-melt layer into Ga bulk.
layer thickness at interface. Two-step reflectivity increase - initially sharp then slower rise. Proportionate, steady increase in reflectivity during pulse.
Recrystallization Summary
CA model Experiment * Cellular automata successfully describe, non-stationary, spatially
. [Phys. Rev. B 63, 165207 (2001)] inhomogeneous dynamics and resulting nonlinear optical properties
* Temperature not an independent D - ] of a medium undergoing a light-induced structural transition.
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